Two-Factor Repeated Measures Designs

James H. Steiger

Department of Psychology and Human Development Vanderbilt University

James H. Steiger (Vanderbilt University)

Two-Factor Repeated Measures Designs

- Introduction
- 2 The $S \times A \times B$ Within-Subjects Design
 - Introduction
 - Melting and Reshaping the Data
 - Analyzing with ezANOVA
- 3 The $S \times A \times B$ Between-Within Design
 - Introduction
 - Reading and Reshaping the Data

・ 同 ト ・ ヨ ト ・ ヨ ト

• In previous modules, we discovered that the completely randomized design and the randomized blocks design are fundamental building blocks for a number of other designs.

- 4 同 6 4 日 6 4 日 6

- In previous modules, we discovered that the completely randomized design and the randomized blocks design are fundamental building blocks for a number of other designs.
- We also pointed out that the 1-Way Repeated Measures design is actually a randomized blocks design with Subjects as the single blocking factor.

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

- In previous modules, we discovered that the completely randomized design and the randomized blocks design are fundamental building blocks for a number of other designs.
- We also pointed out that the 1-Way Repeated Measures design is actually a randomized blocks design with Subjects as the single blocking factor.
- In this module, we explore extensions of the basic designs.

- In previous modules, we discovered that the completely randomized design and the randomized blocks design are fundamental building blocks for a number of other designs.
- We also pointed out that the 1-Way Repeated Measures design is actually a randomized blocks design with Subjects as the single blocking factor.
- In this module, we explore extensions of the basic designs.
- The extensions can go in several directions:

(4 回) (4 \Pi) (4 \Pi)

- In previous modules, we discovered that the completely randomized design and the randomized blocks design are fundamental building blocks for a number of other designs.
- We also pointed out that the 1-Way Repeated Measures design is actually a randomized blocks design with Subjects as the single blocking factor.
- In this module, we explore extensions of the basic designs.
- The extensions can go in several directions:
 - There can be more than one repeated measure, or *within-subjects* factor.

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

- In previous modules, we discovered that the completely randomized design and the randomized blocks design are fundamental building blocks for a number of other designs.
- We also pointed out that the 1-Way Repeated Measures design is actually a randomized blocks design with Subjects as the single blocking factor.
- In this module, we explore extensions of the basic designs.
- The extensions can go in several directions:
 - There can be more than one repeated measure, or within-subjects factor.
 - In a repeated measures design, there can be more than one group of subjects, in which case we have a *between-subjects* factor. Indeed, there can be several between-subjects factors combined factorially.

イロト イポト イヨト イヨト

- In previous modules, we discovered that the completely randomized design and the randomized blocks design are fundamental building blocks for a number of other designs.
- We also pointed out that the 1-Way Repeated Measures design is actually a randomized blocks design with Subjects as the single blocking factor.
- In this module, we explore extensions of the basic designs.
- The extensions can go in several directions:
 - There can be more than one repeated measure, or within-subjects factor.
 - In a repeated measures design, there can be more than one group of subjects, in which case we have a *between-subjects* factor. Indeed, there can be several between-subjects factors combined factorially.
 - When within-subjects and between-subjects factors occur in the same design, we can refer to the design as a *between-within* design.

イロト 不得下 イヨト イヨト 二日

The $S \times A \times B$ Within-Subjects Design

Introduction

- We can extend the 1-Way Repeated Measures design to two or more repeated measures factors, combined factorially.
- An example is presented in RDASA3 Section 15.2.
- Each of 6 subjects were presented with figures that were varied across 3 levels of Distortion (Factor A) and 3 levels of Orientation (Factor B). So each subject was presented with 9 photos in all. The order of presentation was varied randomly for each subject.
- Data are presented in Table 15.3, and are available online in the file Table1503.csv.

イロト 不得 トイヨト イヨト

The $S \times A \times B$ Within-Subjects Design

Introduction

		<i>B</i> ₁			B ₂			<i>B</i> ₃	
Subjects	A	A ₂	A ₃	A	A ₂	A ₃	A_1	A ₂	A_3
1	1.18	2.40	2.48	4.76	4.93	3.13	5.56	4.93	5.21
2	1.14	1.55	1.25	4.81	4.73	3.89	4.85	5.43	4.89
3	1.02	1.25	1.30	4.98	3.85	3.05	4.28	5.64	6.49
4	1.05	1.63	1.84	4.91	5.21	2.95	5.13	5.52	5.69
5	1.81	1.65	1.01	5.01	4.18	3.51	4.90	5.18	5.52
6	1.69	1.67	1.04	5.65	4.56	3.94	4.12	5.76	4.99
Cell and n	narginal me	ans			-				
	A ₁	A ₂	A ₃	\overline{Y}_{k}					
B.	1.315	1.692	1.487	1 498	-)				
B_{2}	5.020	4.577	3.412	4.336					
B_3	4.807	5.410	5.465	5.227					
$\overline{Y}_{j.}$	3.714	3.89	3.455	$\bar{Y} = 3.687$					

Table 15.3 Data for a two-factor repeated-measures experiment (A is orientation, B is distortion)

James H. Steiger (Vanderbilt University)

5 / 14

The $S \times A \times B$ Within-Subjects Design

Introduction

 As is usually the case with repeated measures data, we need to recast the data prior to analysis. We start by reading in the data and adding a Subject variable.

```
> Table1503 <- read.csv("Table1503.csv")</pre>
```

```
> Subject <- 1:6
```

```
> Table1503 <- cbind(Subject, Table1503)</pre>
```

```
> Table1503
```

	Subject	A1B1	A2B1	A3B1	A1B2	A2B2	A3B2	A1B3	A2B3	A3B3
1	1	1.18	2.40	2.48	4.76	4.93	3.13	5.56	4.93	5.21
2	2	1.14	1.55	1.25	4.81	4.73	3.89	4.85	5.43	4.89
3	3	1.02	1.25	1.30	4.98	3.85	3.05	4.28	5.64	6.49
4	4	1.05	1.63	1.84	4.91	5.21	2.95	5.13	5.52	5.69
5	5	1.81	1.65	1.01	5.01	4.18	3.51	4.90	5.18	5.52
6	6	1.69	1.67	1.04	5.65	4.56	3.94	4.12	5.76	4.99

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

The $S \times A \times B$ Within-Subjects Design Melting the Data

- Next, we "melt" the data, using the melt function from the reshape library.
- Note how, in the call, I just use the numbers of the variables to be used as id.vars and measured.vars.

```
> temp <- melt(Table1503, id.vars = 1, measure.vars = 2:10)
> temp[1:10, ]
  Subject variable value
              A1B1 1.18
1
         1
2
              A1B1 1.14
3
              A1B1 1.02
         3
4
              A1B1 1.05
         4
5
         5
              A1B1 1.81
6
         6
              A1B1 1.69
7
         1
              A2B1 2.40
8
         2
              A2B1 1.55
9
         3
              A2B1 1.25
         4
              A2B1 1.63
```

- Taking a look at this, we see that R still has no way of knowing how to identify which columns stand for which factors, and which levels are involved.
- Thorough study of the reshape package and the (different) reshape function in R may well enable you to automate the further processing of the data. In this case, I simply create new variables to tell R which observations are at which levels of each factor.
- Code on the next slide shows how I did this.

3

(日) (周) (三) (三)

The $S \times A \times B$ Within-Subjects Design Reshaping the Data

- > A <- rep(c(rep(1, 6), rep(2, 6), rep(3, 6)), 3)
- > B <- c(rep(1, 18), rep(2, 18), rep(3, 18))
- > rm.data <- data.frame(cbind(temp\$Subject, temp\$value, A, B))</pre>
- > colnames(rm.data) <- c("Subject", "Rating", "Orientation", "Distortion")</pre>
- > rm.data\$Subject <- factor(rm.data\$Subject)</pre>
- > rm.data\$Orientation <- factor(rm.data\$Orientation)</pre>
- > rm.data\$Distortion <- factor(rm.data\$Distortion)</pre>
 - Now that the data are properly arranged for analysis, a simple call to the ezANOVA function in the ez library accomplishes the analysis.
 - You can verify that this analysis agrees with Table 15.4 in RDASA3.

The $S \times A \times B$ Within-Subjects Design

Analyzing with ezANOVA

> ezANOVA(rm.data, wid = .(Subject), dv = .(Rating), within = .(Orientation, Distortion)) \$ANOVA Effect DFn DFd F p p<.05 ges 2 Orientation 2 10 9.233704 5.348849e-03 * 0.1586956 3 Distortion 2 10 302.559959 1.135536e-09 * 0.9364271 4 Orientation: Distortion 4 20 7.750117 6.088323e-04 * 0.4800754 \$`Mauchly's Test for Sphericity` Effect W p p<.05 Orientation 0.96186281 0.9251801 2 3 Distortion 0.92723232 0.8597598 4 Orientation: Distortion 0.05631215 0.4226226 \$`Sphericity Corrections` Effect GGe p[GG] p[GG] <.05 HFe 2 Orientation 0.9632638 6.038310e-03 * 1.5551085 3 Distortion 0.9321683 3.939469e-09 * 1.4647649 4 Orientation:Distortion 0.4617494 1.149319e-02 * 0.7201061 p[HF] p[HF]<.05 2 5.348849e-03 * 3 1.135536e-09 * 4 2.753985e-03 * 3 James H. Steiger (Vanderbilt University) 9 / 14

The $S \times A \times B$ Within-Subjects Design Analyzing with ezANOVA

					Significance		
Source	df	SS	MS	F	p	G–G	H–F
S	5	.544	.109				
A (orientation)	2	1.749	.874	9.23	.005	.006	.005
SA	10	.947	.095				
B (distortion)	2	136.554	68.277	302.56	.000	.000	.000
SB	10	2.257	.226				
AB	4	8.560	2.140	7.75	.001	.011	.003
SAB	20	5.522	.276				
Total	53	156.133					

Table 15.4 ANOVA of the data of Table 15.3

Note: G-G refers to the Greenhouse-Geiser correction for nonsphericity and H-F refers to the Huynh-Feldt correction.

3

소리가 소문가 소문가 소문가 ...

The $S \times A \times B$ Between-Within Design

Introduction

• A frequently-used design is the $S \times A \times B$ between-within design, with the A and B fixed effects factors crossed factorially, but with different groups of subjects in each cell representing the levels of the A factor, but each subject being measured on all levels of the B factor.

・ロト ・四ト ・ヨト ・ヨト

The $S \times A \times B$ Between-Within Design

Introduction

- A frequently-used design is the $S \times A \times B$ between-within design, with the A and B fixed effects factors crossed factorially, but with different groups of subjects in each cell representing the levels of the A factor, but each subject being measured on all levels of the B factor.
- I prefer to call such a design a "between-within" design.

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

The $S \times A \times B$ Between-Within Design

Introduction

- A frequently-used design is the $S \times A \times B$ between-within design, with the A and B fixed effects factors crossed factorially, but with different groups of subjects in each cell representing the levels of the A factor, but each subject being measured on all levels of the B factor.
- I prefer to call such a design a "between-within" design.
- MWL refer to it as a "mixed" design, a poor choice because it is easily confused with a "mixed model" (meaning random effects and fixed effects in the same design. I'll stick to the term "between-within" when describing such models.

・ロト ・聞 ト ・ ヨト ・ ヨト …

The $S \times A \times B$ Between-Within Design

Introduction

- A frequently-used design is the $S \times A \times B$ between-within design, with the A and B fixed effects factors crossed factorially, but with different groups of subjects in each cell representing the levels of the A factor, but each subject being measured on all levels of the B factor.
- I prefer to call such a design a "between-within" design.
- MWL refer to it as a "mixed" design, a poor choice because it is easily confused with a "mixed model" (meaning random effects and fixed effects in the same design. I'll stick to the term "between-within" when describing such models.
- An example of data for such a design is shown in RDASA3, Figure 15.5.

イロト 不得下 イヨト イヨト 二日

The $S \times A \times B$ Between-Within Design

Introduction

Method of		~	Time of test				
instruction		B ₁	B ₂	B ₃	B4		
	S ₁₁	82	48	41	53	56	
	S_{21}	72	70	51	45	62	
	S_{31}	43	35	30	12	30	
A_1	S_{41}	77	41	61	31	50	
	S_{51}	43	43	21	29	34	
	S_{61}	67	39	30	40	44	
	$\overline{Y}_{.1k}$	64	46	39	35	$\overline{Y}_{.1.} = 46$	
	S_{12}	71	53	50	62	59	
	Sm	89	67	76	68	75	
	Sin	82	84	83	71	80	
4,	S42	56	56	55	45	53	
-	So	64	44	44	52	51	
	S_{62}	76	74	64	74	72	
	$\overline{Y}_{.2k}$	73	63	62	62	$\overline{Y}_{.2} = 65$	
	Sin	84	80	75	77	79	
	S 23	84	72	63	81	75	
	Sn	76	54	57	61	62	
A_3	Sa	84	66	61	77	72	
	Sa	67	69	55	69	65	
	S_{63}	61	67	55	61	61	
	\overline{Y}_{3k}	76	68	61	71	$\overline{Y}_{3} = 69$	
	$\overline{Y}_{,k}$	71	59	54	56	$\overline{Y}_{} = 60$	

Table 15.5 Data for a design with one between-subjects (A) and one within-subjects (B) factor

3

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

The $S \times A \times B$ Between-Within Design

Reading and Reshaping the Data

```
> Table1505 <- read.csv("Table1505.csv")
> rm.data <- data.frame(melt(Table1505, id.vars = 1:2, measure.vars = 3:6))
> rm.data$A <- factor(rm.data$A)
> rm.data$Subject <- factor(rm.data$Subject)
> colnames(rm.data) = c("Subject", "Method", "Time", "Score")
> rm.data[1:12, ]
```

Subject Method Time Score

1	1	1	B1	82
2	2	1	B1	72
3	3	1	B1	43
4	4	1	B1	77
5	5	1	B1	43
6	6	1	B1	67
7	7	2	B1	71
8	8	2	B1	89
9	9	2	B1	82
10	10	2	B1	56
11	11	2	B1	64
12	12	2	B1	76

The $S \times A \times B$ Between-Within Design

Analyzing the Data with ezANOVA

> ezANOVA(rm.data, wid = .(Subject), dv = .(Score), between = .(Method), within = .(Time)) \$ANOVA Effect DFn DFd F p p<.05 ges Method 2 15 7.754636 4.869065e-03 * 0.43225191 Time 3 45 18.717131 5.017839e-08 * 0.24754979 4 Method:Time 6 45 3.155378 1.142322e-02 * 0.09984871 S'Mauchly's Test for Sphericity' Effect W p p<.05 Time 0.08021159 1.958756e-06 * 4 Method: Time 0.08021159 1.958756e-06 \$`Sphericity Corrections` p[GG] p[GG]<.05 HFe Effect GGe p[HF] Time 0.6777957 4.525655e-06 * 0.7849439 1.007433e-06 4 Method:Time 0.6777957 2.721846e-02 * 0.7849439 2.032304e-02 p[HF]<.05

Table 15.8 ANOVA of the data in Table 15.5

Source	df	Sum of squares	Mean square	F	р	G–G	H–F
A (Method)	2	7,248	3,624.00	7.76	0.005		
S/A	15	7,010	467.33				
B (Time)	3	3,132	1,044.00	18.72	0.000	0.000	0.000
AB	6	1,056	176.00	3.16	0.011	0.027	0.015
$B \times S/A$	45	2,510	55.78				